Freestanding Abradable Coating Manufacture and Tensile Test Development

Thermal Spray Coatings Technology, Metal Improvement Company Curtiss-Wright Surface Technologies Derby, UK

21st May 2013

Dr Richard Johnston

r.johnston@swansea.ac.uk MATERIALS RESEARCH CENTRE COLLEGE OF ENGINEERING SWANSEA UNIVERSITY

Freestanding Abradable Coating and Mechanical Testing

- Background to abradable materials in aero-engines
- Abradable materials and manufacture
- Design requirements
- Lack of coating property data
- Freestanding abradable test-piece manufacture
- Tensile testing
- Al-Si hBN Abradable coating properties

Freestanding Abradable Coating and Mechanical Testing

Summary of other characterisation techniques

- ≻X-Ray Microtomography
- ➢Abradability
- ➢Erosion resistance
- ≻Hardness
- ≻Thermal shock/fatigue
- ≻Adhesion/bond strength

Abradable Materials Background

- Aim of abradable materials is to improve engine efficiency and performance by reducing clearance gaps and minimise over-tip gas leakage.
- Abradable linings are designed to wear preferentially to other engine components.

Abradable Materials Background

- Aim of abradable materials is to improve engine efficiency and performance by reducing clearance gaps and minimise over-tip gas leakage.
- Abradable linings are designed to wear preferentially to other engine components.

Abradable Materials Background

- Aim of abradable materials is to improve engine efficiency and performance by reducing clearance gaps and minimise over-tip gas leakage.
- Abradable linings are designed to wear preferentially to other engine components.

Abradable Materials and Manufacture

>Thermally Sprayed Materials

•Powder is injected into a high-energy plasma

•Particles cool and solidify on impact

Abradable Materials and Manufacture

>Metallic structure

Metallic matrixNon-metallic dislocator phase

Abradable Materials and Manufacture

>Metallic structure

Metallic matrixNon-metallic dislocator phase

Design Requirements

> Thermal Fatigue

Design Requirements

- Thermal Fatigue
- Mismatch in the Coefficients of Thermal Expansion
- Residual Manufacturing Stresses
- Grit blasting of substrate (Mechanical)
- Spray process (Thermal)
- Subsequent machining (Mechanical)
- Erosion Resistance
- Aggressive gas stream
- High-Temperature Oxidation Resistance
- Particularly in aggressive environments

Coating Property Data

Coating Property Data

- Difficult to generate representative stresses
- Substrate properties dominate results
- Coating structure results in anisotropic properties Abradable

Coating Property Data

- Difficult to generate representative stresses
- Substrate properties dominate results
- Coating structure results in anisotropic properties Abradable Coating

- ➢ Coating structure results in a non-brittle failure
- Difficult to detect point of failure

AquapourTM is used to produce a mould
Non-toxic polymer composite material
Guaranteed to withstand >200°C
Dissolvable in water

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Swansea University College of Engineering

AquapourTM is used to produce a mould
Non-toxic polymer composite material
Guaranteed to withstand >200°C
Dissolvable in water

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Coating is sprayed into moulds Rotational configuration representative of engine component Abradable material fills mould cavity and bonds to AquapourTM

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Swansea University College of Engineering

Coating is sprayed into moulds Rotational configuration representative of engine component Abradable material fills mould cavity and bonds to AquapourTM

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Mould material is removed
Mould structure dissolves in water
Producing a freestanding abradable coating
Final test piece machining ensures surface finish

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007. Hopkins and Shipman, Patent Nos. EP1600522 A2,A3,B1, US20050263923 A1, 2005-09.

Mould material is removed
Mould structure dissolves in water
Producing a freestanding abradable coating
Final test piece machining ensures surface finish

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Hopkins and Shipman, Patent Nos. EP1600522 A2,A3,B1, US20050263923 A1, 2005-09.

Freestanding Coating Tensile Testing

Freestanding coating specimen tensile test
Machined specimen was tested to failure under a tensile load
Iterative improvement of specimen dimensions

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Hopkins and Shipman, Patent Nos. EP1600522 A2,A3,B1, US20050263923 A1, 2005-09.

Freestanding Coating Tensile Testing

Freestanding coating specimen tensile test
Machined specimen was tested to failure under a tensile load
Iterative improvement of specimen dimensions

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007. Hopkins and Shipman, Patent Nos. EP1600522 A2,A3,B1, US20050263923 A1, 2005-09.

➤Geometry Considerations

•Small gauge width designed to cause failure within gauge length •Edge cracking during machining

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

➤Geometry Considerations

•Small gauge width designed to cause failure within gauge length •Edge cracking during machining

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

➤Geometry Considerations

•Spray 'shadowing' within thin cross sections

Reduced Integrity due to Layering

➤Geometry Considerations

Surface features resulted in failure initiation at blend radiusTest piece geometry optimisation study

Crack Initiation at Blend Radius

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

➤Geometry Considerations

Surface features resulted in failure initiation at blend radiusTest piece geometry optimisation study

Crack Initiation at Blend Radius (10mm)

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Strain Measurement

➤Tensile Testing

- •Accurate measurement of load vs extension
- •Low stress (< 20 MPa)
- •Delicate specimens

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Strain Measurement

➤Tensile Testing

•Accurate measurement of load vs extension

•Low stress (< 20 MPa)

•Delicate specimens

Extension Measurement	Sensitive to Small Loads	Abradable 'Friendly'	Low Extension Accuracy
Cross-Head Movement	8	0	8
Laser Extensometer		0	8
Clip Gauge	0	8	0
Strain Gauge	0	0	0

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

Stress – Strain plot for Al-Si + hBN abradable coating
No pure elastic response
Low strain to failure

Freestanding Coating Development

≻Iterative Development

- •Variation of gauge length
- •Variation of gauge width
- •Variation of blend radius
- •Methods of strain measurement

•Assessed failure location, measured properties, statistical repeatability.

Johnston and Evans, *Surf Coat Tech*, Vol 202(4-7), 2007.

AlSi-hBN

NiCrAl-Bentonite

NiCrAl-Bentonite-BN

Johnston, *Surf Coat Tech*, Vol 205(4-7), 2011.

College of Engineering

Swansea University College of Engineering

Coating	Mean modulus, E (GPa)	Confidence interval for E (GPa)	Mean UTS (MPa)	Confidence interval for UTS (MPa)	Mean strain to failure, ɛf	Confidence interval for εf
AlSi-hBN	17.22	0.84	29.51	5.31	0.00236	0.00062
NiCrAl-Bentonite-BN	0.75	0.08	1.93	0.07	0.0101	0.00124
NiCrAl-Bentonite	1.39	0.17	3.18	0.11	0.0077	0.00054

Johnston, *Surf Coat Tech*, Vol 205(4-7), 2011.

Johnston et al, *Mechanical Properties and Performance of Engineering Ceramics and Composites VII*, Daytona, FL, Jan 2012.

Johnston et al, *Mechanical Properties and Performance of Engineering Ceramics and Composites VII*, Daytona, FL, Jan 2012.

Johnston et al, *Mechanical Properties and Performance of Engineering Ceramics and Composites VII*, Daytona, FL, Jan 2012.

Zhao et al, *Surf Coat Tech*, Vol 205(23), 2012.

Micro-tomography slices taken from 3D images of the microstructure of a sample exposed at 1150C for 0 (a), 20 (b), 120h (c).

Zhao et al, *Surf Coat Tech*, Vol 205(23), 2012.

Abradability Testing

- Difficult to reconstruct extreme conditions within gas turbine

- •Temperature at the rear of segment
- •Blade tip velocity
- •Wear track length
- Incursion rate and depth
- Blade height discrepancy
- •Surface temperature of abradable
- •Wear track roughness
- Vibration data
- •Wear mechanism

Sulzer-Innotec Rig

Bardi et al, *J Therm Spray Tech*, Vol 17(5-6), 2008.

Abradability Testing - Wear Tracks

Sporer and Wilson, *Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition*, Houston, TX, May 2012.

Abradability Testing - Wear Maps

MR : Microrupture

Bounazef et al, Materials Letters.

Erosion Behaviour

The ratio of the mass loss of the specimen to the mass of the grit is called erosion rate, E in mg/g.

ASTM G76 - 07 Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets

Erosion Behaviour

Abradable Coating Hardness Testing

- Hardness is a quick measure of mechanical integrity
- Used in manufacturing
- Relatively simple test compared to other characterisation methods for abradable coatings
- Normally using Rockwell superficial hardness HR15Y
- Can use Vickers microhardness for characterisation of abradable microstructure components

Thermal Shock/Fatigue Testing

- Thermal shock or thermal fatigue in abradable coatings is driven by the thermal expansion coefficient mismatch between coating and substrate

- Relatively basic methods of characterising

- Can measure number of cycles until spallation/delamination, residual stress, phase changes

- Scrivani et al. showed that increased porosity in YPSZ TBCs, enhances the thermal fatigue resistance, and reduces the in-phase compressive stress

Scrivani et al, *J Therm Sp Tech*, Vol 15(5-6), 2007.

Adhesion/Bond/Cohesive Strength

Summary

- Development of a novel manufacturing route and testing methodology for freestanding thermal spray coatings

- Looked at non-destructive ways of visualising constituent phases and porosity
- Number of additional methods for evaluating mechanical behaviour

- A suite of significant and applicable characterisation techniques will be suitable, depending on the application.

Freestanding Abradable Coating Manufacture and Tensile Test Development

The data in this paper were generated in the MACE (Materials for Arduous Cycles and Emissions) Project (TP/2/ET/6/I/10037), which forms part of the Technology Strategy Board (formerly Department of Trade and Industry) Technology Programme. Rolls-Royce plc. would like to acknowledge the financial support given by the Technology Strategy Board.