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• Introduction to thermal spraying at Nottingham.
• What options are available for improving coating

reliability and performance?
• Case study 1: Developing appropriate reliability

measurements for WC-Co cermet systems.
• Case study 2: Process monitoring of thermal spraying

and data interpretation.
• Summary and conclusions.

This presentation will cover the following:



Introduction – Thermal Spray at Nottingham
• Academic Staff

– Graham McCartney, Philip Shipway, Katy Voisey

• Processing Facilities
– Thermal Spray: Liquid fuel and gas fuel spray systems (MetJet and

Top Gun) also cold spray equipment
– Particle Diagnostic Equipment: DPV 2000 (thermal spray) and Oxford

Lasers PIV system (cold spray)
– Powder production: Sieving, milling, mechanical alloying

• Coating testing
– Characterisation of coatings (XRD, OM, SEM, TEM);
– sliding and fretting wear behaviour;
– electrochemical and salt spray corrosion behaviour;
– high temperature oxidation and creep testing;
– Coating fracture and ductility by four point bending
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• Coating systems
– Improved cermets (WC-Co, WC-Ni, Cr3C2-Ni(Cr), TiC-Ni(Cr))
– Improved performance of corrosion resistant alloys (eg IN625)
– Novel amorphous/nanocrystalline alloys (Nanosteel, Armacor etc)
– New and improved MCrAlYs for bond coats
– Cold spray materials: Cu, Ti, multilayers, Al-Si alloys, composites
– Novel thermal spray applications (Al-Sn journal bearings, pyrophoric

materials)

• Technical support staff
– Rory Screaton

• Research students
– Currently 5 PhDs on thermal spraying, over 15 PhDs graduated in

thermal spray since 1995.

Introduction – Thermal Spray at Nottingham
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• Metallurgists and materials engineers focus on process – structure – property
relationships in engineering materials - thermally sprayed coatings are no
exception.

• BUT process-property links not well understood in coatings :

− Thermal spraying is a stochastic process i.e. coating is built up from the 
deposition of many thousands of individual particles and each particle can
have its own individual structural characteristics

− Thermal spraying has many different process parameters that need to be 
controlled e.g. powder feedstock, input rates of gases/fuels, torch motion
relative to substrate, substrate characteristics

• Additionally, what do we want to measure about the coating? Ideally a relevant
property or performance but this may not be easy.

• So optimising properties for a particular application is a major challenge.

Improving reliability and performance (1)
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Improving reliability and performance (2)

1. Design of Experiments (DOE/Taguchi) methods

2. Open loop/closed loop process monitoring and control

Ultimately we can employ one or other of the following
approaches:

However, both have limitations in their capability to achieve
consistent, reliable and optimised performance.
Also we should be asking, “By how much does control improve
the economics of the thermal spray industry and what does it
cost?”
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Case study 1: Improved performance of WC-Co in a
safety critical application

• First, identify the ideal outcome (i.e. what is the specification of the
coating?) and secondly identify all operator controllable variables and
set appropriate levels.

• Secondly, define a number of simple tests to assess the ideal outcome
commonly: microhardness, indentation fracture toughness, porosity,
microstructural analysis etc; all involve local area/volume analysis.

• Thirdly, plot average response graphs and use analysis of variance
(ANOVA) methods to predict spray parameters needed for ‘ideal’
behaviour.

OBJECTIVE
Use experimental design approach with a fractional factorial

design (DoE) to optimise performance
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WC-Co DOE 10 02

Results of initial DoE trials - microstructure

For WC-Co coatings, measure ratio of WC to W2C
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• Plot response graphs
(examples shown)

• Use ANOVA to obtain
optimum parameters
for “ideal coating”
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Case study 1: How well does this approach work?

• Monitor process reliability and repeatability in production through
statistical process control charts (SPC approach).

• Measure the same “properties” as used in the experimental design to
monitor process stability

• Examples are shown on the next slide for 19 spray runs with the
“optimised” process parameters
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Statistical process control charts for
• Fracture toughness
• Microhardness
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Case study 1: How well does this approach work?
• Results look promising

• BUT

− Have we captured everything?

− Is this the whole story?

− Are we measuring the right set of properties?

In this example we had collected additional property data which I’ve not
shown you yet on fracture strain of the coating. Loosely we can call
this the coating “ductility”. This shines some new light on the story and
highlights two important points

− Simple properties like hardness are not necessarily the 
right ones to measure

− Very localised property measurements like hardness 
can give misleading data on Process Control
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Case study 1: The Post Script – Measuring Ductility

METHOD
• Four point bend testing with acoustic emission (AE)
• AE sensors detect cracking onset at a critical strain
• AE sensors and associated software compute

cumulative strain energy released during bending

AE AE

64.0 mm

32.0 mm

Coating

LVDT

Cross head
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Case study 1: The Post Script – Measuring Ductility

On bending the sample we get multiple cracking of the WC-Co
coating as seen in the SEM image of the coating surface. Network
of cracks of near uniform spacing
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Case study 1: The Post Script – Measuring Ductility

Plot of cumulative
energy detected
versus nominal strain
on the coating surface
for a typical HVOF
WC-Co coating.
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Case study 1: The Post Script – Measuring Ductility
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Results of DoE trials
new information on:

• strain when cracking begins

• total energy emitted

This will change the ANOVA output and influence what we regard as optimised
settings.
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Case study 1: The Post Script – Measuring Ductility

• A further benefit of measuring the fracture behaviour of
coatings in this way is that we are sampling a much larger
volume of material than conventional analyses such as
microhardness or a microstructural feature

• This is seen in the following slide where we compare four
point bend test results as a SPC tool.

• Suppliers A and B look identical from a SPC chart of
microhardness measurements but look very different when
four point bend test data are examined
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Case study 1: The Post Script – Measuring Ductility
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SPC charts based on microhardness. Both suppliers meet the
requirements
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SPC charts based on
microhardness.
Supplier B has much greater
variability
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Case study 1: Improved performance of WC-Co in a safety
critical application

CONCLUSIONS
• DoE methods can be successfully used to achieve desired

performance characteristics in HVOF sprayed WC-Co coatings
• Selecting appropriate properties for measurement can present a

challenge
• Traditional test methods such as microhardness, indentation

fracture toughness etc usually involve small localised measurement
volumes

• Four point bend testing with in-situ AE is a reliable method for
determining onset of fracture in WC-Co coatings.

• This test samples a large volume and can detect variabilities arising
from subtle changes in process conditions which are not detected
in other testing procedures
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Case study 2: Process monitoring of thermal spraying
using spray diagnostics

OBJECTIVE
Measure individual particle temperature, velocity and size during

spraying and relate to process parameters

• Methodology is applied to optimising the liquid fuel HVOF spraying of
NiCoCrAlY (MCrAlY) coatings used as bond coats in a thermal
barrier coating system on superalloy gas turbine blades

• Employs the Tecnar DPV 2000 system to measure particle temp (T),
velocity (V) and diameter (D) simultaneously

• Investigates how selected process parameters affect the above
particle properties and influence coating features
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MCrAlY Bond Coats in gas turbine components

TC

BC = bond coat
TC = ceramic
top coat
TGO =
thermally grown
oxide
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Process monitoring of thermal spraying

Key bond coat properties:

• Low oxygen content of coating < 0.5 wt% O

• Low porosity of coating

• Good bonding of “splats”, and coating well bonded to
substrate

• Bond coat forms a slowly growing oxide (TGO) when
exposed to high temperature (750 to 950 C).
Excessive TGO growth leads to spallation failure of
ceramic top coat

Aim to replace LPPS with HVOF spraying for lower cost with at least
equivalent properties
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DPV-2000 System
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Sensing head

90
º

DPV-2000 System
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Process monitoring of thermal spraying
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Can we use the DPV data to help us make coatings better,
faster, cheaper?

• Is it precise (ie close to correct values)

• Is it accurate ( ie reproducible)

• Is it responsive to parameter changes

• How do we relate data to coating
formation and ultimately coating
properties

Questions we need to answer

Following slides illustrate at least some partial
answers

Process monitoring of thermal spraying
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Response to parameter changes – Stand off
distance (SOD)
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Response to parameter changes – oxygen to kerosene ratios
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Response to parameter changes – oxygen to kerosene ratios
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C

b

Response to parameter changes – oxygen to kerosene ratios

Hotter, higher velocity
powder particles

Colder, lower velocity
powder particles

Effect on
microstructure
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Case study 2: Process monitoring of thermal spraying
using spray diagnostics

CONCLUSIONS
• The link between particle properties and coating microstructures

has been clearly demonstrated for a (Ni,Co)CrAlY alloy.

• The particle diagnostics approach provides direct information on
how individual parameters affect particle properties (eg fuel,
oxygen and powder flows) which DoE does not provide.

• The Tecnar DPV-2000 accurately captures size, temperature and
velocity data of individual particles; itrequires careful set up and
is not, in itself, an industrial control tool.

• The DPV-2000 is not a full field of view instrument so it is time
consuming to capture data at various stand-off distances.
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OVERALL SUMMARY

• The objective of developing advanced controls is to produce coatings
having the same properties day after day or whose properties are
within a range of values acceptable for a specific application.

• To reach this goal one needs: reliable spray equipment; consistent
feed materials; efficient controllers; properly designed and applied
sensing and evaluation techniques.

• A good understanding of the physical and metallurgical processes
involved in thermal spraying is essential to implement an adequate
control strategy
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